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LETTER TO THE EDITOR 

Non-zero quantum contribution to the soliton mass in the SUSY 
sineGordon model 

J Casahorran 
Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 
Zaragoza, Spain 

Received 20 February 1989 

Abstract. Using an explicitly finite method which only needs the discrete levels of Schrodin- 
ger equations, the non-zero quantum contribution to the soliton mass in the SUSY sine- 
Gordon model is found. 

The evaluation of the first quantum correction to the kink or soliton mass in 
bidimensional supersymmetric models has been an interesting subject over the last 
decade, starting from the work of Witten and Olive [l]. In particular, Schonfeld [2] 
and Kaul and Rajaraman [3] calculated the non-vanishing kink mass correction, paying 
especial attention to the problems associated with the divergent character of a typical 
‘one-loop’ contribution. In any case both bosonic and fermionic quantum corrections 
to the mass of extended topological objects are calculated taking the physical system 
enclosed in a compact space of length L: the following task is the normal-mode- 
frequency sum over the inhomogeneous vacuum with a subtraction procedure for an 
identical contribution over the homogeneous one. Afterwards the renormalisation 
technique for a ‘one-loop’ order term is applied and finally the limit L +  CO allows us 
to retrieve the initial open situation. The details of a hard process such as the one 
mentioned can be found in [4]. 

However, in a recent article [5], we presented a unified calculation method for 
both bosonic and fermionic quantum corrections to the kink mass energies interpreted 
as a peculiar version of the Casimir effect. Moreover our procedure is an explicitly 
finite technique which only works with the discrete levels of Schrodinger equations, 
thus bypassing subtleties connected with boundary conditions or renormalisation 
counterterms. Going to the associated supersymmetric models this explicitly finite 
method should be a valuable tool in order to evaluate the non-vanishing mass correction 
within the SUSY context. We can even expound some observations about the relation 
between supersymmetry and the topological non-trivial sectors [6]. The point is that 
the Lagrangian shifted around the kink or soliton is not invariant under the supersym- 
metry transformation because its variation produces surface terms, usually neglected 
over the homogeneous vacuum but non-vanishing in a topological non-trivial back- 
ground. This phenomenon simultaneously appears with central charge emergence 
while the saturation of the Bogomolny bound may be studied in terms of the N = f 
SUSY case, a reduced version of the N = 1 initial situation [6]. In any case the mass 
correction analysis in supersymmetric models is normally calculated taking the kink 
solution of the (A44)1+1 theory [3]. Moreover using different techniques a zero-mass 
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correction to the soliton of the sine-Gordon system has been pointed out [7]. In this 
paper we claim the non-vanishing first quantum contribution to the soliton rest mass 
and the explicit calculation is performed according to the technique described in [ 5 ] .  

We then start from a system whose Lagrangian density is the following [3]: 

where 4 represents a real scalar field while corresponds to a Majorana fermionic 
one. Taking the bosonic part we point the trivial vacuum as well as the solution with 
a topological flavour, in this case the well known sine-Gordon soliton [ 4 ]  

4m 
4 A x )  = - tan-'(eW). Li 4 0 = 0  

(In the following we set the soliton velocity U equal to zero, which can be always 
satisfied by a suitable Lorentz transformation.) Before the direct global mass correction 
calculation we prefer an independent study for both bosonic and fermionic contribu- 
tions [ 5 ] .  

Firstly, we write the bosonic normal modes equations built around the classical 
solutions of (2) to sum up 

Now the Schrodinger equation (36) includes an only eigenvalue within the discrete 
spectrum, namely w &  = 0, while the continuous part starts from the bosonic rest mass 
m [ 8 ] .  As only the energy differences are significant we can express the first quantum 
bosonic correction to the soliton mass in the following way [ 4 ] :  

If we recall that the only discrete eigenvalue wk, = 0 of (36), the more rigorous 
version of the AMB Casimir energy will be 

where nBs and nBo correspond to the density fluctuation modes of the Schrodinger 
equations expressed in (3). Indeed very elegant closed formulae were found for this 
bosonic Casimir energy [9]. To sum up: if the denominated U ( x )  potential, in this case 

2m2 
cosh2 mx 

U ( x )  = - 

obeys the two following conditions: a 'reflectionless' character for the proper U ( x )  
and the integrability of (1 + 1x1) U ( x ) ,  perfectly satisfied in the sine-Gordon system, 
then the explicitly finite expression for AMB reduces to [9] 

m 
AM, = -- C (sin e, - e, COS e,) 

T r  
(7) 
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where ths sum is extended over the discrete spectrum of the equation (3b), namely 

Making good use of (8) with Bo= 1r /2  we finally obtain [9] 

A MB = - m/ T. (9) 

Before the global supersymmetric analysis we pass to a purely fermionic study. 
The general Majorana equations over the backgrounds marked in (2) respectively 
correspond to 

which we can recast in the general form 

Writing the spinor in its two-component form 

equation ( 1  1 )  is reduced to the coupled pair 

In fact the problem contains a hidden SUSY quantum mechanics character where a 
simple identification leads to [6] 

Q'V = WFU @ = W F v .  

Then the Majorana equation (11) adopts the form 

0 0' [ Q 0 ][ z] =..[ z]' 
Moreover the two Schrodinger equations obtained through Q'Q and QQ' correspond 
to 
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Anyway the fermionic correction to the soliton mass should be [4] 

1 "  
2 r = O  

AMF=-- (WFsr-WFOr). 

If we bear in mind that equation ( lob)  exhibits only the wFS = 0 eigenvalue within 
the discrete spectrum, a more rigorous version of the Casimir energy (17) is 

where nFs, nFo represent the density fluctuation modes of the Majorana equations over 
the topological solution and the homogeneous vacuum respectively. Returning now 
to the SUSY quantum mechanics character of the fermionic part, we can find an elegant 
relation between the density fluctuation modes nF of the Majorana equation and the 
nu, nu densities fluctuation modes associated with the Schrodinger equations (16). 

Calling nF the density fluctuation modes associated with the S operator, see the 
(14a) equation, it represents half the density of 

Q'Q 0 
s2=[  0 QQ']. 

To prove this fact we consider the operator [6 ]  

P=['  0 -1  o ]  

maintaining an anticommutation property with S while it commutes with S2. For each 
eigenvalue w i  of S2 we can find two eigenstates (Cl )  and PlCl), only one of which is a 
positive-frequency eigenstate of S with eigenvalue wF. If we denote by nu and nu the 
densities associated with the two Schrodinger operators of (16), nu + nu being the 
density of S2, the final result is 

nF = t( n, + ?I"). (21) 

= = nBO and nFO = nB0 = no (22) 

Moreover for the homogeneous vacuum 4o 

while over the dS(x) we must independently consider the nsu, nsu densities. We are 
about to apply these ideas in order to determine the first quantum contribution to the 
mass of the SUSY sine-Gordon soliton. The quantum contribution, including both 
bosonic and fermionic terms, is 

If we recall that in this case the normal modes equation (3b) coincides with (16a), 
the relations (21) and (22) lead to 

or, in a more simple form, 

AM =AMu+AMu. (25) 
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Applying now a general formula, like the one pointed out in (7) for both AM,,, 
AM" typical bosonic contributions, we get 

AM,, = - m / 2 r  AM,=O (26) 

AM = - m / 2 r .  (27) 

and finally 

Then we have established the non-zero quantum contribution to the soliton mass 
in the SUSY sine-Gordon model using an explicitly finite method which only needs the 
discrete levels of Schrodinger equations. 
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